superhy

Yang Hu's Personal Page

View My GitHub Profile

Welcome to Yang’s Personal Pages

Hi, I’m Yang Hu, an Artificial Intelligence Researcher. If there is something more to say, I am currently interested in the development and application of lightweight and interpretable foundation models. The application scenarios are broad, but mainly in the medical and health fields. What I care about most is understanding cancer.

Education & Experience

2025.11 ~ now, Lecturer in Computer Science, School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK

2022.1 ~ 2025.11, Postdoctoral Research Scientist, Nuffield Department of Medicine, University of Oxford, Oxford, UK

2021.1 ~ 2022.1, Postdoctoral Research Assistant, Department of Engineering Science, University of Oxford, Oxford, UK

2019.10 ~ 2020.10, Research Assistant, Web Science Institute, University of Southampton, Southampton, UK

2016.9 ~ 2020.12, PhD student, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China

Opportunity

PhD Opening (Full CSC–Leicester Scholarship, deadline: 11 Dec 2025)Details

Selected Publications

2025

  1. Hu, Y., Sirinukunwattana, K., Li, B., Gaitskell, K., Domingo, E., Bonnaffé, W., … & Rittscher, J. (2025). Self-interactive learning: Fusion and evolution of multi-scale histomorphology features for molecular traits prediction in computational pathology. Medical Image Analysis. (IF: 11.8)
  2. Hu, J., Guo, J., Luo, C., Hu, Y., Lanzinger, M., & Li, Z. (2025). Enabling Generalized Zero-Shot Vulnerability Classification. IEEE Transactions on Dependable and Secure Computing. (IF: 7.5)
  3. Wood, R., Hu, Y., Rittscher, J., & Li, B. (2025). GenST: A Generative Cross-Modal Model for Predicting Spatial Transcriptomics from Histology Images. In MICCAI Workshop on Computational Pathology with Multimodal Data (COMPAYL).

2024

  1. Xu, Y., Wen, G., Hu, Y., & Yang, P. (2024). Modeling Hierarchical Structural Distance for Unsupervised Domain Adaptation. IEEE Transactions on Circuits and Systems for Video Technology. (IF: 8.3)
  2. Shi, Y., Yang, K., Wang, M., Yu, Z., Zeng, H., & Hu, Y. (2024). Boosted unsupervised feature selection for tumor gene expression profiles. CAAI Transactions on Intelligence Technology. (IF: 8.4)
  3. Yao, Y., Liu, X., Yu, Z., Lv, J., Hu, Y., & Yang, K. (2024, November). Unsupervised Cross-Modal Medical Image Retrieval with Ensemble Prototype Alignment. In 2024 IEEE International Conference on Medical Artificial Intelligence (MedAI).

2023

  1. Bonnaffé, W., Group, C. R. U. K., Hamdy, F., Hu, Y., Mills, I., Rittscher, J., … & Woodcock, D. J. (2023). Beyond attention: deriving biologically interpretable insights from weakly-supervised multiple-instance learning models. arXiv preprint arXiv:2309.03925.
  2. Hu, Y., Sirinukunwattana, K., Li, B., Gaitskell, K., Bonnaffe, W., Wojciechowska, M., … & Rittscher, J. (2023). Flexible and Highly-Efficient Feature Perception for Molecular Traits Prediction via Self-interactive Deep Learning. medRxiv, 2023-07.

2022

  1. Dai, D., Yu, Z., Huang, W., Hu, Y., & Chen, C. P. (2022). Multi-Objective Cluster Ensemble Based on Filter Refinement Scheme. IEEE Transactions on Knowledge and Data Engineering (TKDE). (IF: 9.235)
  2. Hu, Y., Sirinukunwattana, K., Gaitskell, K., Wood, T., Verrill C., Rittscher, J. (2022). Predicting molecular traits from tissue morphology through self-interactive multi-instance learning[C]. MICCAI’22; LNCS, 2022.
  3. Hu, Y., Chapman, A., Wen, G., & Hall, D. W. (2022). What Can Knowledge Bring to Machine Learning?—A Survey of Low-shot Learning for Structured Data[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 13(3), 1-45. (IF: 10.489) pdf

2021

  1. Xu, Y., Wen, G., Yang, P., Fan, B., Hu, Y., Luo, M., & Wang, C. (2021). Task-Coupling Elastic Learning for Physical Sign-based Medical Image Classification[J]. IEEE Journal of Biomedical and Health Informatics (JBHI), 26(2), 626-637. (IF: 7.021)
  2. Hu, Y., Wen, G., Luo, M., Dai, D., Cao, W., Yu, Z., & Hall, W. (2021). Inner-Imaging Networks: Put Lenses Into Convolutional Structure[J]. IEEE Transactions on Cybernetics (TCYB). (IF: 19.118) pdf
  3. Hu, Y., Wen, G., Luo, M., Yang, P., Dai, D., Yu, Z., … & Hall, W. (2021). Fully-Channel Regional Attention Network for Disease-Location Recognition with Tongue Images[J]. Artificial Intelligence in Medicine (AIIM), 102110. (IF: 7.011) pdf
  4. Hu, Y., Wen, G., Chapman, A., Yang, P., Luo, M., Xu, Y., … & Hall, W. (2021). Graph-based Visual-Semantic Entanglement Network for Zero-shot Image Recognition[J]. IEEE Transactions on Multimedia (TMM). (IF: 8.182) pdf
  5. Xu, Y., Wen, G., Hu, Y., Luo, M., Dai, D., Zhuang, Y., & Hall, W. (2021). Multiple attentional pyramid networks for Chinese herbal recognition[J]. Pattern Recognition (PR), 110, 107558. (IF: 8.518)

2020

  1. Luo, M., Wen, G., Hu, Y., Dai, D., & Ma, J. (2020). Learning competitive channel-wise attention in residual network with masked regularization and signal boosting[J]. Expert Systems with Applications (ESWA), 160, 113591. (IF: 8.665)
  2. Luo, M., Wen, G., Hu, Y., Dai, D., & Xu, Y. (2020). Stochastic region pooling: Make attention more expressive[J]. Neurocomputing, 409, 119-130. (IF: 5.779)
  3. Liang, H., Wen, G., Hu, Y., Luo, M., Yang, P., & Xu, Y. (2020). MVANet: Multi-Tasks Guided Multi-View Attention Network for Chinese Food Recognition[J]. IEEE Transactions on Multimedia (TMM). (IF: 8.182)
  4. Wen, G., Ma, J., Hu, Y., Li, H., & Jiang, L. (2020). Grouping attributes zero-shot learning for tongue constitution recognition[J]. Artificial Intelligence in Medicine (AIIM), 109, 101951. (IF: 7.011)

2019

  1. Liao, H., Wen, G., Hu, Y., & Wang, C. (2019). Convolutional herbal prescription building method from multi-scale facial features[J]. Multimedia Tools and Applications, 78(24), 35665-35688. (IF: 2.577)
  2. Hu, Y., Wen, G., Liao, H., Wang, C., Dai, D., & Yu, Z. (2019). Automatic construction of chinese herbal prescriptions from tongue images using CNNs and auxiliary latent therapy topics[J]. IEEE transactions on cybernetics (TCYB). (IF: 19.118)

2018

  1. Hu, Y., Wen, G., Ma, J., Li, D., Wang, C., Li, H., & Huan, E. (2018). Label-indicator morpheme growth on LSTM for Chinese healthcare question department classification[J]. Journal of biomedical informatics (JBI), 82, 154-168. (IF: 8)

Contact

Email: superhy199148@hotmail.com (personal) hy208@leicester.ac.uk (work)

Address: KE523 Ken Edwards Building, University Rd, University of Leicester, Leicester LE1 7RH, UK

Google Scholar: Yang Hu

Twitter: @superhy199148

LinkedIn: Yang Hu

ZHIHU: NX-8MAA09148HY